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Elimination

lexikographical ordering

xα1
1 ·. . .·x

αn
n > xβ1

1 ·. . .·x
βn
n if αj = βj for j ≤ k−1 and αk > βk

I ⊂ K [x1, . . . , x ] ideal, G Gröbner basis, then
G ∩ K [xk , . . . , xn] is a Gröbner basis of I ∩ K [xk , . . . , xn].

this means geometrically to compute the projection
π : V (I ) ⊂ Kn −→ Kn−k+1.
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Projection

−→

π : V (z2 − x + 1, y − xz) ⊂ C3 −→ V (x3 − x2 − y2) ⊂ C2.
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Infineon Tricore Project

Aim: prove that the processor (32 Bit) works correctly
every instruction of the processor will be verified specifying
special properties and proving them
it is difficult to check the arithmetic properties

Gerhard Pfister Algebraic Geometry in Applications Lahore, August 2018



Robotics
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Computational Biology

Phylogenetics is the study of the evolution of a set of species from
a common ancestor. The evolution will be described using a
phylogenetic tree.

Gorilla Human Chimpanzee

To reconstruct such a tree pieces of DNA sequences are used.

Gorilla AAGCTTCACCGGCGCAGTTGTTCTTATAATTGCCCACGGACTTACATCAT

Cimpanzee AAGCTTCACCGGCGCAATTATCCTCATAATCGCCCACGGACTTACATCCT

Human AAGCTTCACCGGCGCAGTCATTCTCATAATCGCCCACGGGCTTACATCCT
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Computer Vision

The Perspective-n-Point problem, i.e. the problem of determining
the absolute position and orientation of a camera given its intrinsic
parameters and a set of n 2D-to-3D point correspondences, is one
of the most important problems in computer vision with a broad
range of applications in structure from motion or recognition.

Gerhard Pfister Algebraic Geometry in Applications Lahore, August 2018



Models for Economy

Felix Kubler and Karl Schmedders (University of Zürich)

General problem:

Study a computer model of a national economy,
a standard exchange economy with finitely many agents and goods

especially study equilibria
Walrasian equilibrium consists of prices and choices, such that household maximize utilities, firms maximize

profits and markets clear

Mathematical problem:
Find the positive real roots of a given system of polynomial
equations
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Coding theorie
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Sudoku

5 8
6 2 5

6 4 7
7 9 6
5 2 6 1

3 6 4
3 7 4

1 5 8
6 1

Abbildung: Sudoku
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A Problem of Group Theory Solved Using Algebraic
Gometry and Computer Algebra

Let G be a finite group, define

G (1) := [G ,G ] = 〈aba−1b−1 | a, b ∈ G 〉 .

and G (i) := [G (i−1),G ].
G is called nilpotent, if G (m) = {e} for some m.

Abelian groups are nilpotent.

If the order of G is a power of a prime, G is nilpotent.

G is nilpotent ⇔ it is a direct product of its Sylow groups.

S3 is not nilpotent.
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Nilpotent Groups

Magma:

> G:=Sym(3);

> H:=CommutatorSubgroup(G,G);

H;

Permutation group acting on a set of cardinality 3

Order = 3

(1, 2, 3)

> CommutatorSubgroup(H,G);

Permutation group acting on a set of cardinality 3

Order = 3

(1, 2, 3)
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Dihedral Group

D4 =< r , s|r4 = s2 = e, srs = r−1 >

> #DihedralGroup(4);

8

> G:=CommutatorSubgroup(DihedralGroup(4),DihedralGroup(4));

Permutation group acting on a set of cardinality 4

Order = 2

(1, 3)(2, 4)

> CommutatorSubgroup(G,DihedralGroup(4));

Permutation group acting on a set of cardinality 4

Order = 1
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Solvable groups

Now define

G (i) := [G (i−1),G (i−1)],

then G is called solvable, if G (m) = {e} for a suitable m.

nilpotente groups are solvable.

S3,S4 are solvable.

groups of odd order are solvable.

S5,A5 are not solvable.
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PSL

PSL(2,K ) = SL(2,K )/
{

( a 0
0 a )

∣∣ a2 = 1
}

especially

PSL(2,F5) = {[( a11 a12
a21 a22 )] , a11a22 − a21a12 = 1}

[( a11 a12
a21 a22 )] =

{
( a11 a12
a21 a22 ) ,

(
4a11 4a12
4a21 4a22

)}
.

It holds:

PSL(2,F5) ∼= PSL(2,F4) ∼= A5
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Solvable groups

> G:=PSL(2,5);

> G;

Permutation group G acting on a set of cardinality 6

Order = 60 = 2^2 * 3 * 5

(3, 4)(5, 6)

(1, 6, 2)(3, 4, 5)

> IsIsomorphic(G,Alt(5));

true Homomorphism of GrpPerm: G, Degree 6, Order 2^2 * 3 * 5 into

GrpPerm: $, Degree 5, Order 2^2 * 3 * 5 induced by

(3, 4)(5, 6) |--> (1, 3)(2, 5)

(1, 6, 2)(3, 4, 5) |--> (1, 4, 2)
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Computeralgebra and finite Groups

Problem: Characterize the class of finite solvable groups G by
2–variable identities.

Example:

G is abelian ⇔ xy = yx ∀ x , y ∈ G

(Zorn, 1930) A finite group G is nilpotent ⇔ ∃ n ≥ 1, such
that vn(x , y) = 1 ∀ x , y ∈ G
(Engel Identity)

v1 := [x , y ] = xyx−1y−1 (commutator)
vn+1 := [vn, y ]
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Main Result

Theorem (T. Bandman, G.-M. Greuel, F. Grunewald,
B. Kunyavsky, G. Pfister, E. Plotkin)

U1 = U1(x , y) := x−2y−1x ,

Un+1 = Un+1(x , y) = [xUnx
−1, yUny

−1].

A finite group G is solvable ⇔ ∃ n, such that
Un(x , y) = 1 ∀ x , y ∈ G .

Let x , y ∈ G such that y 6= x−1 and
U1(x , y) = U2(x , y)⇒ Un(x , y) 6= 1 ∀ n ∈ N.
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Proof

G solvable ⇒ Identity is true (by definition).

Idea of ⇐
Theorem (Thompson, 1968) Let G be simple and minimally not
solvable (i.e. G is not solvable but every proper subgroup is
solvable). Then G is one of the following groups:

PSL(2,Fp), p a prime number ≥ 5

PSL(2,F2p), p a prime number

PSL(2,F3p), p a prime number

PSL(3,F3)

Sz(2p) p a prime number.

If is enough to prove (for G in Thompson’s list):
∃ x , y ∈ G , such that y 6= x−1 and U1(x , y) = U2(x , y).
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Translation to algebraic Geometry

Let us consider G = PSL(2,FpFpFp), p ≥ 5

Consider the matrices

x =

(
t 1
−1 0

)
y =

(
1 b
c 1 + bc

)
x−1 =

(
0 −1
1 t

)
implies y 6= x−1 for all (b, c , t) ∈ F3

p.
It is enough to prove that the equation

U1(x , y) = U2(x , y), i.e.
x−1yx−1y−1x2 = yx−2y−1xy−1

has a solution (b, c , t) ∈ F3
p.
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The equations

The entries of U1(x , y)− U2(x , y) are the following polynomials
p1, . . . , p4 in Z[b, c , t]. Let I =< p1, . . . , p4 >.

p1 = b3c2t2 + b2c2t3 − b2c2t2 − bc2t3 − b3ct + b2c2t + b2ct2 + 2bc2t2

+bct3 + b2c2 + b2ct + bc2t − bct2 − c2t2 − ct3 − b2t + bct + c2t

+ct2 + 2bc + c2 + bt +2 ct + c + 1

p2 = −b3ct2 − b2ct3 + b2c2t + bc2t2 + b3t − b2ct − 2bct2 − b2c + bct

+c2t + ct2 − bt − ct − b − c − 1

p3 = b3c3t2 + b2c3t3 − b2c2t3 − bc2t4 − b3c2t + b2c3t +2 b2c2t2

+2bc3t2 +2 bc2t3 + b2c2t +2 b2ct2 + bc2t2 − c2t3 − ct4 − 2b2ct

+bc2t + c3t + bct2 + 2c2t2 + ct3 − b2c − b2t + bct + c2t + bt2

+3ct2 + bc − bt − b − c + 1

p4 = −b3c2t2 − b2c2t3 + b2c2t2 + bc2t3 + b3ct − b2c2t − b2ct2 − 2bc2t2

−bct3 − 2b2ct + c2t2 + ct3 + b2t − bct − c2t − ct2 + b2 − bt
−2ct − b − t + 1

The zero set of I is a curve.
We have to prove that for every prime p there are Fp-rational
points on the curve.
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Hasse–Weil–Theorem

Theorem von Hasse–Weil (generalized by Aubry and Perret for
singulare curves):

Let C ⊆ An be an absolutely irreducible affine curve defined over
the finite field Fq and C ⊂ Pn its projective closure ⇒

#C (Fq) ≥ q + 1− 2pa
√
q − d

(d = degree, pa = arithmetic genus of C ).

The Hilbert–polynomial of C , H(t) = d · t − pa + 1, can be
computed using the ideal Ih of C :
We obtain H(t) = 10t − 11⇒ d = 10, pa = 12.
Since p + 1− 24

√
p − 10 > 0 if p > 593, we obtain the result.
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absolute irreduciblity

Proposition: V (I (p)) is absolutely irreducibel for all primes p ≥ 5.

proof:

Using SINGULAR we show:

〈f1, f2〉 : h2 = I .

f1 = t2b4 + (t4 − 2t3 − 2t2)b3 − (t5 − 2t4 − t2 − 2t − 1)b2

−(t5 − 4t4 + t3 + 6t2 + 2t)b + (t4 − 4t3 + 2t2 + 4t + 1)
f2 = (t3 − 2t2 − t)c + t2b3 + (t4 − 2t3 − 2t2)b2

−(t5 − 2t4 − t2 − 2t − 1)b − (t5 − 4t4 + t3 + 6t2 + 2t)
h = t3 − 2t2 − t

Gerhard Pfister Algebraic Geometry in Applications Lahore, August 2018



absolute irreduciblity

Proposition: V (I (p)) is absolutely irreducibel for all primes p ≥ 5.
proof:

Using SINGULAR we show:

〈f1, f2〉 : h2 = I .

f1 = t2b4 + (t4 − 2t3 − 2t2)b3 − (t5 − 2t4 − t2 − 2t − 1)b2

−(t5 − 4t4 + t3 + 6t2 + 2t)b + (t4 − 4t3 + 2t2 + 4t + 1)
f2 = (t3 − 2t2 − t)c + t2b3 + (t4 − 2t3 − 2t2)b2

−(t5 − 2t4 − t2 − 2t − 1)b − (t5 − 4t4 + t3 + 6t2 + 2t)
h = t3 − 2t2 − t

Gerhard Pfister Algebraic Geometry in Applications Lahore, August 2018



absolute irreduciblity

Proposition: V (I (p)) is absolutely irreducibel for all primes p ≥ 5.
proof:

Using SINGULAR we show:

〈f1, f2〉 : h2 = I .

f1 = t2b4 + (t4 − 2t3 − 2t2)b3 − (t5 − 2t4 − t2 − 2t − 1)b2

−(t5 − 4t4 + t3 + 6t2 + 2t)b + (t4 − 4t3 + 2t2 + 4t + 1)
f2 = (t3 − 2t2 − t)c + t2b3 + (t4 − 2t3 − 2t2)b2

−(t5 − 2t4 − t2 − 2t − 1)b − (t5 − 4t4 + t3 + 6t2 + 2t)
h = t3 − 2t2 − t

Gerhard Pfister Algebraic Geometry in Applications Lahore, August 2018



absolute irreduciblity

Let P(x) := t2J[1]|b=x/t then P is monic of degree 4.

x4 + (t3 − 2t2 − 2t)x3 − (t5 − 2t4 − t2 − 2t − 1)x2−
(t6 − 4t5 + t4 + 6t3 + 2t2)x + (t6 − 4t5 + 2t4 + 4t3 + t2).

We prove, that the induced polynomial P ∈ Fp[t, x ] is absolutely
irreducibel for all primes p ≥ 2.
(Using the lemma of Gauß this is equivalent to P being irreducibel
in Fp(t)[x ].)
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absolute irreduciblity

Ansatz

(∗) P = (x2 + ax + b)(x2 + gx + d)

a, b, g , d polynomials in t with variable coefficients

a(i), b(i), g(i), d(i) .

The decomposition (∗) with a(i), b(i), g(i), d(i) ∈ Fp does
not exist iff the ideal C generated by the coefficients with respect
to x , t of P − (x2 + ax + b)(x2 + gx + d) has no solution in Fp .
This is equivalent to the fact that 1 ∈ C.
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The ideal of the coefficients of C:

C[1]=-b(5)*d(3)

C[2]=-b(5)*g(2)

C[3]=-b(4)*d(3)-b(5)*d(2)

C[4]=-b(4)*g(2)-b(5)*g(1)-d(3)-1

C[5]=-b(3)*d(3)-b(4)*d(2)-b(5)*d(1)+1

C[6]=-b(5)-g(2)-1

C[7]=a(0)*b(5)-a(2)*d(3)-b(3)*g(2)-b(4)*g(1)-d(2)+4

C[8]=-a(0)^2*b(5)+b(0)*b(5)-b(2)*d(3)-b(3)*d(2)-b(4)*d(1)-b(5)-4

C[9]=-a(2)*g(2)-b(4)-g(1)+2

C[10]=a(0)*b(4)-a(1)*d(3)-a(2)*d(2)-b(2)*g(2)-b(3)*g(1)-d(1)-1

C[11]=-a(0)^2*b(4)+b(0)*b(4)-b(1)*d(3)-b(2)*d(2)-b(3)*d(1)-b(4)+2

C[12]=a(0)-a(1)*g(2)-a(2)*g(1)-b(3)-d(3)

C[13]=-a(0)^2+a(0)*b(3)-a(0)*d(3)-a(1)*d(2)-a(2)*d(1)+b(0)-b(1)*g(2)-b(2)*g(1)-7

C[14]=-a(0)^2*b(3)+b(0)*b(3)-b(0)*d(3)-b(1)*d(2)-b(2)*d(1)-b(3)+4

C[15]=-a(2)-g(2)-2

C[16]=a(0)*a(2)-a(0)*g(2)-a(1)*g(1)-b(2)-d(2)+1

C[17]=-a(0)^2*a(2)+a(0)*b(2)-a(0)*d(2)-a(1)*d(1)+a(2)*b(0)-a(2)-b(0)*g(2)-b(1)*g(1)-2

C[18]=-a(0)^2*b(2)+b(0)*b(2)-b(0)*d(2)-b(1)*d(1)-b(2)+1

C[19]=-a(1)-g(1)-2

C[20]=a(0)*a(1)-a(0)*g(1)-b(1)-d(1)+2

C[21]=-a(0)^2*a(1)+a(0)*b(1)-a(0)*d(1)+a(1)*b(0)-a(1)-b(0)*g(1)

C[22]=-a(0)^2*b(1)+b(0)*b(1)-b(0)*d(1)-b(1)

C[23]=-a(0)^3+2*a(0)*b(0)-a(0)

C[24]=-a(0)^2*b(0)+b(0)^2-b(0)
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absolute irreduciblity

Using Singular, one shows that over

Z
[
{a(i)}, {b(i)}, {g(i)}, {d(i)}

]

4 =
24∑
i=1

Mi C[i ] .
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Algebraic Statistics: Point of View of Algebraic Geometry

A statistical model in algebraic statistics is a polynomial map

ϕ : Rd → Rm
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Statistical Models

Example

If X is the random variable 1 describing the number of heads in m
flips of a coin, and t ∈ [0, 1] is the probability that we obtain head
in one flip, then we can use the binomial distribution to model
this situation:

Prob(X = j) =

(
m

j

)
t j(1− t)m−j .

These polynomials describe a map

ϕ : R→ Rm+1, t 7→ (. . . ,
(m
j

)
t j(1− t)m−j , . . .).

This map is our statistical model.

1A random variable is defined as a function that maps the outcomes of
unpredictable processes to numerical quantities, typically real numbers.
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Statistical Models

Example

If we regard ϕ as a map over the complex numbers

ϕ : C→ Cm+1, t 7→ (. . . ,
(m
j

)
t j(1− t)m−j , . . .),

write p0, . . . , pm for the coordinate functions on Cm+1, and
consider the ideal

J := 〈{pj −
(
m

j

)
t j(1− t)m−j}j=0,...,m〉 ⊆ C[p0, . . . , pm, t],

then the elimination ideal I = J ∩ C[p0, . . . , pm] describes the
Zariski closure of the image of ϕ.

Every polynomial in I is called a
model invariant.
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Statistical Models

Based on observations in an experiment, we can use the model
invariants to value t. We consider the case m = 6:

Example

ring R = 0, (p(0..6),t), dp;

ideal J = p(0)-(1-t)^6,p(1)-6t*(1-t)^5,

p(2)-15t2*(1-t)^4,p(3)-20t3*(1-t)^3,

p(4)-15t4*(1-t)^2,p(5)-6t5*(1-t),

p(6)-t6;

ideal I = eliminate(J,t);

ring S = 0, p(0..6), dp;

ideal I = imap(R,I);

I;
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Statistical Models

Example

I[1] =p(0)+p(1)+p(2)+p(3)+p(4)+p(5)+p(6)-1

I[2] =5*p(5)^2-12*p(4)*p(6)

...

I[16]=5*p(1)^2+7560*p(1)*p(6)+12600*p(2)*p(6)

+16200*p(3)*p(6)+18900*p(4)*p(6)+21000*p(5)*p(6)

+22680*p(6)^2-12*p(2)+54*p(3)-252*p(4)+1680*p(5)

-22680*p(6)
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Statistical Models

Example

Now suppose that we observed in an experiment that p3 = 1
4 .

Then this determines the other pi in the model.

LIB "solve.lib";

I = I, p(3)-1/4;

solve(I);

We obtain 6 solutions, 2 of which are real:
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Statistical Models

Example
[1]: [2]:

[1]: [1]:

0.064862202 0.0024089531

[2]: [2]:

0.22479279 0.025023044

[3]: [3]:

0.32460995 0.10830306

[4]: [4]:

0.25 0.25

[5]: [5]:

0.10830306 0.32460995

[6]: [6]:

0.025023044 0.22479279

[7]: [7]:

0.0024089531 0.064862202

We obtain 6 solutions, 2 of which are real:
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Statistical Models

Example

From this we deduce that t is either 0.36613231 or 0.63386769.
This shows that the coin is not fair (that is, the probability for
head is different from 1

2 ).
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Algebraic Statistics

For the general situation let X be a discrete random 2 variable
taking values in {1, . . . , n}. Let the probabilities P(X = i) be given
parametrically by polynomials pi (t1, . . . , td). The statistical model
in algebraic statistics is the polynomial map

ϕ : Rd → Rn , ϕ(t) = (p1(t), . . . , pn(t)).

Consider in C[p1, . . . , pn, t1, . . . , td ] the ideal J generated by
{pi − pi (t)}i=1,...,n. Over the complex numbers the elimination
ideal I = J ∩ C[p1, . . . , pn] describes the Zariski closure of the
image of ϕ, the model variety. Every polynomial in I is called a
model invariant.

2A random variable is defined as a function that maps the outcomes of
unpredictable processes to numerical quantities, typically real numbers.

Gerhard Pfister Algebraic Geometry in Applications Lahore, August 2018



Computational Biology

What is DNA =Deoxyribo Nucleic Acid?

DNA molecules contain the biological instructions that make
each species unique.

DNA is made of chemical building blocks called nucleotides.
These building blocks are made of three parts: a phosphate
group, a sugar group and one of four types of nitrogen bases.
To form a strand of DNA, nucleotides are linked into chains.

The four types of nitrogen bases found in nucleotides are:
adenine (A), thymine (T), guanine (G) and cytosine (C). The
order, or sequence, of these bases determines what biological
instructions are contained in a strand of DNA.

DNA contains the instructions needed for an organism to
develop, survive and reproduce.
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Evolution and Mutations

Evolution depends on mutations, that is, changes in the
nucleotide sequence of an organisms genetic material.
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Phylogenetic Trees and Evolution

Given (parts of) the DNA of a number of living species, the goal in
using phylogenetic trees is to obtain information on the least
common ancestor. The living species are represented by the leaves
of the tree, while the root will represent the least common ancestor
of all considered species. We make the assumption, that the living
species are represented by parts of DNA of equal lenghts:

Gorilla AAGCTTCACCGGCGCAGTTGTTCTTATAATTGCCCACGGACTTACATCAT

Cimpanzee AAGCTTCACCGGCGCAATTATCCTCATAATCGCCCACGGACTTACATCCT

Human AAGCTTCACCGGCGCAGTCATTCTCATAATCGCCCACGGGCTTACATCCT

These are strings in the letters A,C ,G ,T representing the
nucleotides.
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Phylogenetic Tree

Gorilla Human Chimpanzee

This tree has 5 nodes including the three leaves corresponding to
Gorilla, Human, Chimpanzee.
The node on top of the tree is called root (common ancestor).
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Phylogenetic Trees and Evolution

We assume that only substitutions occur during the evolutionary
process and that this satisfies the following conditions:

(1) Each nucleotide of the sequence evolves independently of the
other nucleotides and in the same way (identically distributed).

(2) The state at a node only depends on the previous state.3

(3) At bifurcating branches the process is independent on the
common node.

3A process with this property is called a Markov Process.
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Phylogenetic Trees and Evolution

We consider a so-called phylogenetic tree T to model the situation:
We think of the edges of the tree as evolutionary steps.

For a node v , we denote by Pv
X the probability having

X ∈ {A,C ,G ,T} at a certain position of the DNA string at this
node, and write Pv = (Pv

A,P
v
C ,P

v
G ,P

v
T ).

To each edge e = (v1, v2) we associate a matrix of probabilities

Me =


PA|A · · · PT |A
PA|C · · · PT |C
PA|G · · · PT |G
PA|T . . . PT |T

 = (M(X ,Y )),
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Phylogenetic Trees and Evolution

M(X ,Y ) = PX |Y is the probability that X ∈ {A,C ,G ,T} at the
node v1 changes to Y ∈ {A,C ,G ,T} at the node v2 during the
evolutionionary step represented by e.
Me is a stochastical matrix. 4

We have Pv1Me = Pv2 .

We write v1 = pa(v2) and call v1 the parent of v2.

4The sum of the entries in a row of the matrix is 1, the sum of the entries
of a column in the matrix is 1.
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Phylogenetic Trees and Evolution

We write for the nodes N (T ) = {1, . . . , n, n + 1, . . . ,N}
such that the leaves L(T ) = {1, . . . , n} and N being the root.
We assume that we have random variables X1, . . . ,XN at the
nodes taking values x1, . . . , xN ∈ {A,C ,G ,T} and write

Px1,...,xn = Prob(X1 = x1, . . . ,Xn = xn).

Gorilla AAGCTTCACCGGCGCAGTTGTTCTTATAATTGCCCACGGACTTACATCAT

Cimpanzee AAGCTTCACCGGCGCAATTATCCTCATAATCGCCCACGGACTTACATCCT

Human AAGCTTCACCGGCGCAGTCATTCTCATAATCGCCCACGGGCTTACATCCT

PA,A,A = number of observations of AAA
sequence length = 10

50 = 1
5 .
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Phylogenetic Trees and Evolution

According to the Markov property of our process we obtain

Px1,...,xn =
∑

(xn+1,...,xN )

xs∈{A,C ,G ,T}

PN
xN

∏
v∈N (T )r{N}

M(pa(v),v)(xpa(v), xv ) .

We obtain a map

ϕT : R4 ×
∏

e∈E(T )

R16 −→ R4n

ϕT (PN , (entries of Me)e∈E(T )) = (. . . ,Px1,...,xn , . . .)

which we consider as before as a map over the complex numbers:

ϕT : C4 ×
∏

e∈E(T )

C16 −→ C4n .
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Phylogenetic Trees and Evolution

The choice of a special type of the matrices Me and a distribution
PN for the root defines the modelM choosen for the tree. If these
matrices depend on d parameters and π : Cd −→ C4 ×

∏
e∈E(T )

C16

defines this specification, we obtain the model map ϕMT = ϕT ◦ π:

ϕMT : Cd −→ C4n .

The phylogenetic variety according to the tree T and the model
M, VM(T ) is the Zariski closure of the image of ϕMT in C4n .
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Phylogenetic Trees and Evolution

There are many special models in evolutionary biology. We will
give one example. The distribution at the root is usually choosen
as PN = {1

4 ,
1
4 ,

1
4 ,

1
4 ).

The Jukes–Cantor model

considers at the edges matrices of type
1− 3a a a a

a 1− 3a a a
a a 1− 3a a
a a a 1− 3a
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Example

Let us consider the phylogenetic tree

1 2 3

4

5

such that the leaves 1, 2, 3 correspond to Gorilla, Human,
Chimpanzee. The the Jukes-Cantor model is given by the map

ϕMT : C4 −→ C64 .

We want to compute now the ideal J of model invariants,
V (J) = =(ϕMT ).
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Example

We simplify the notations assuming that {A,C ,G ,T} is identified
with {1, 2, 3, 4}. Then we have (before specializing to the
Jukes-Cantor model)

Pijk =
4∑

l ,m=1

P5
mM(5,1)(i ,m)M(5,4)(l ,m)M(4,2)(j , l)M(4,3)(k , l) .
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Example

> ring JC=0,(p(1..4)(1..4)(1..4),a(1..4)),lp;

We create the ideal I associated to the map ϕM
T and eliminate the variables a(1), a(2), a(3), a(4) occuring in the

4 stochastic matrices M(5,1),M(5,4),M(4,2),M(4,3) to obtian the ideal J of the 61 model invariants.

> ideal J=eliminate(I,a(1)*a(2)*a(3)*a(4));

> J;

J[1]=p(4)(4)(2)-p(4)(4)(3)

J[2]=p(4)(4)(1)-p(4)(4)(3)

[...]

J[55]=24*p(1)(2)(3)+12*p(4)(3)(3)+12*p(4)(3)(4)+12*p(4)(4)(3)

+4*p(4)(4)(4)-1

J[56]=p(1)(2)(2)-p(4)(3)(3)

J[57]=p(1)(2)(1)-p(4)(3)(4)

J[58]=p(1)(1)(4)-p(4)(4)(3)

J[59]=p(1)(1)(3)-p(4)(4)(3)

J[60]=p(1)(1)(2)-p(4)(4)(3)

J[61]=p(1)(1)(1)-p(4)(4)(4)
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Example

If we compare the parts of DNA for Gorilla, Human and
Chimpanzee (from a part of length 1000), we observe
p1,1,1 = 9

50 , p4,3,3 = 9
500 and p1,1,3 = 3

1000 .

Using this observation we can compute the stochastic matrices.
There is one degree of freedom with respect to the 4 parameters of
the matrices.
If we put a1 = 0.03 we obtain a2 = 0.006, a3 = 0.02 and a4 = 0.05.
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Example

We can use the model invariants to decide about the topology of
the tree. In our special situation we have 6 possibilities for Gorilla ,
Human and Chimpanzee.

Gorilla Human Chimpanzee

We know than this tree is correct.

If we exchange the Chimpanzee and the Gorilla in our model then
we obtain a value for p4,1,1 = 3

1000 which was not observed.
Observed was p4,1,1 = 9

500 .
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